EAE1106 - Métodos Computacionais para Economia

Faculdade de Economia, Administração, Contabilidade e Atuária
Universidade de São Paulo

1º semestre de 2026


Professor: Arthur Viaro
Atendimento: Sala 230, FEA 2. Link para agendamento.

Aulas: Laboratório 312, FEA 5
Turma 121 - ter 19:30-21:10 / qui 21:20-23:00
Turma 122 - ter 21:20-23:00 / qui 19:30-21:10

Clique aqui para baixar o programa em PDF.

Descrição

A disciplina tem o objetivo de introduzir os estudantes ao raciocínio computacional, aos conceitos relevantes de computação, e às suas aplicações para resolver problemas relevantes no campo da Economia. Para tanto, o curso utilizará a linguagem Python, amplamente utilizada em diversas áreas das ciências. Espera-se que ao final do curso o estudante tenha, além do domínio sobre a sintaxe da linguagem utilizada no curso, capacidade de formular e resolver problemas utilizando recursos computacionais.

Programa do Curso

  1. Fundamentos da Computação e Algoritmos
  2. Introdução ao Python
  3. Tipos de Dados e Expressões
  4. Controle de Fluxo e Iteração
  5. Funções
  6. Programação Orientada a Objetos
  7. Aplicações I: Dados
  8. Aplicações II: Visualização de Dados
  9. Introdução ao R

Consulte o cronograma detalhado (sujeito a alterações): Plano de aulas

Critérios de Avaliação

A avaliação da disciplina será composta por:

Atividade Peso Detalhes
Lista de exercícios 20% Entregas individuais via Moodle
Prova intermediária 30% Avaliação individual em sala de aula
Trabalho final 50% Projeto aplicado em grupo (máx. 5 pessoas)

O trabalho final consistirá em um projeto aplicado de análise de dados, a ser desenvolvido em grupo e entregue ao final do semestre. Os estudantes que não alcançarem média final igual ou superior a 5,0 deverão realizar prova de reavaliação, conforme previsto no regimento da faculdade.

Os grupos deverão ter no máximo 5 alunos e deverão ser informados até o dia 15/abr. As instruções detalhadas para a elaboração do trabalho serão divulgadas nessa mesma data. O relatório final deverá ser entregue em formato PDF, até às 23h59 do dia 10/jun, exclusivamente por meio do sistema Moodle. A avaliação do trabalho ocorrerá durante as apresentações, que serão realizadas nos dois últimos encontros do semestre, conforme previsto no plano de aulas. Cada grupo terá 20 minutos para a apresentação e TODOS os membros do grupo devem estar presentes. O membro do grupo que não comparecer à aula de apresentação terá sua nota zerada.

Horário de Atendimento

Os atendimentos podem ser agendados por meio do link de agendamento. O agendamento prévio não é obrigatório, mas é recomendado. Caso mais de uma pessoa procure atendimento no mesmo horário, terá prioridade quem tiver feito o agendamento antecipadamente. Além disso, o agendamento evita desencontros e garante que o professor estará disponível no momento da chegada do aluno. O horário reservado é tratado como um compromisso. Portanto, por favor, agende apenas se tiver certeza de que poderá comparecer.

E-mail:
Atendimento: Sala 230, FEA 2

Bibliografia

  • Material preparado pelo Prof. Danilo Souza para a disciplina: https://danilosouza-usp.github.io/eae1106/
  • Downey, A. B. (2016). Pense em Python: Pense como um Cientista da Computação. O’Reilly, 2ª edição
  • Guttag, J. (2021). Introduction to Computation and Programming Using Python: With Application to Computational Modeling and Understanding Data. The MIT Press, 3ª edição.
  • McKinney, W. (2018). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly, 2ª edição.
  • T. J. Sargent e J. Stachurski. “Python Programming for Economics and Finance”. https://python-programming.quantecon.org/intro.html

Material do Curso

Links serão adicionados conforme disponibilização.

Notebooks

Listas de Exercícios

As listas devem ser entregues através do Moodle.

  • Lista 1: Entrega xx/xx, às 23h59